Cloning and identification of human Sca as a novel inhibitor of osteoclast formation and bone resorption.
نویسندگان
چکیده
Increased osteoclast activity is responsible for the enhanced bone destruction in postmenopausal osteoporosis, Paget's disease, bone metastasis, and hypercalcemia of malignancy. However, the number of known inhibitory factors that block osteoclast formation and bone resorption are limited. Therefore, we used an expression-cloning approach to identify novel factors produced by osteoclasts that inhibit osteoclast activity. A candidate clone was identified and isolated from a human osteoclast-like multinucleated cell (MNC) cDNA library, named osteoclast inhibitory peptide-1 (OIP-1), and the cDNA sequence was determined. This sequence matched that of the recently identified human stem cell antigen, was structurally similar to the mouse Ly-6 gene family, and the sequence predicted it was a glycosyl phosphatidyl inositol (GPI)-anchored protein that had a cleavable COOH-terminal peptide. Western blot analysis of conditioned media from 293 cells transfected with the OIP-1 cDNA clone confirmed that OIP-1 was released into the media as a membrane-bound GPI-linked protein. Interestingly, both recombinant OIP-1 expressed in Escherichia coli (which does not have GPI linker) and OIP-1 expressed by mammalian cells significantly reduced osteoclast-like MNC formation induced by 1,25-dihydroxyvitamin D3 or PTH-related protein in mouse and human bone marrow cultures, and inhibited 45Ca release from prelabeled bone in fetal rat organ cultures. In contrast, recombinant OIP-1 did not inhibit the growth of a variety of other cell types. These data indicate that OIP-1 is a novel, specific inhibitor of osteoclast formation and bone resorption.
منابع مشابه
Cloning and identification of annexin II as an autocrine/paracrine factor that increases osteoclast formation and bone resorption.
Autocrine products of osteoclasts such as interleukin-6 may play an important role in normal osteoclast formation and activity. To identify novel stimulatory factors for osteoclasts, we have prepared a mammalian cDNA expression library generated from highly purified human osteoclast-like multinucleated cells (MNC) formed in long term bone marrow cultures and screened this library for autocrine ...
متن کاملmiR-31 controls osteoclast formation and bone resorption by targeting RhoA
INTRODUCTION Increased activity of osteoclasts is responsible for bone loss and joint destruction in rheumatoid arthritis. For osteoclast development and bone resorption activity, cytoskeletal organization must be properly regulated. MicroRNAs (miRNAs) are endogenous small noncoding RNAs that suppress expression of their target genes. This study was conducted to identify crucial miRNAs to contr...
متن کاملMicroRNA-26a Regulates RANKL-Induced Osteoclast Formation
Osteoclasts are unique cells responsible for the resorption of bone matrix. MicroRNAs (miRNAs) are involved in the regulation of a wide range of physiological processes. Here, we examined the role of miR-26a in RANKL-induced osteoclastogenesis. The expression of miR-26a was up-regulated by RANKL at the late stage of osteoclastogenesis. Ectopic expression of an miR-26a mimic in osteoclast precur...
متن کاملNovel and selective small molecule stimulators of osteoprotegerin expression inhibit bone resorption.
Osteoprotegerin (OPG), a secreted member of the tumor necrosis factor receptor superfamily, is a potent inhibitor of osteoclast formation and bone resorption. Because OPG functions physiologically as a locally generated (paracrine) factor, we used high-throughput screening to identify small molecules that enhance the activity of the promoter of the human OPG gene. We found three structurally un...
متن کاملThe Rac1 exchange factor Dock5 is essential for bone resorption by osteoclasts.
Osteoporosis, which results from excessive bone resorption by osteoclasts, is the major cause of morbidity for elder people. Identification of clinically relevant regulators is needed to develop novel therapeutic strategies. Rho GTPases have essential functions in osteoclasts by regulating actin dynamics. This is of particular importance because actin cytoskeleton is essential to generate the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 102 7 شماره
صفحات -
تاریخ انتشار 1998